IEEE 802.16 supports fixed-length frame, with flexible (adaptive) DL/UL resource usage ratios. The BS adaptively adjusts DL and UL subframe lengths on a frame-by-frame basis depending on the DL/UL traffics and channel conditions. Typically, the DL:UL resources can be varied from 3:1 to 1:1 in a PMP WiMAX network. Figure 1 illustrates the fixed-length frame in the PMP WiMAX network, and the flexible DL/UL subframes. The figure also depicts the network entry process for subscriber stations (SS) and the scheduling periods for assigning transmission opportunities to SS already initiated into the network. For access (PMP) mode, new SS detects preamble and frame control header (FCH), and identifies the number of DL burst transmissions from the DL MAP in the FCH. At the end of the last DL burst (Figure 1), new SS uses a contention period to exchange network entry request signal with the BS. If successful, the BS process the request and sends entry instruction (assigned DL/UL transmission opportunities, power, etc.) in the DL/UL MAPS of the next frame, and the SS gets initiated into the network. For the mesh mode, new SS waits for network entry signal broadcast at the beginning of a frame, to which they can respond within a specified period. Scheduling process is used for initiating new SS into the network. SS transmits on the scheduled slots.
In the WiMAX standard (802.16e), UL and DL assignments are based on time division multiple access (TDMA). In each frame, the BS scheduler assigns UL and DL transmission opportunities to SS until their negotiated data periods expire. The resources given to an SS for its data transmission are both in the frequency and time domain. WiMAX MAC thus supports frequency-time resource allocation in both DL and UL on a per-frame basis. The resource allocation is delivered in media access protocol (MAP) messages at the beginning of each frame. Therefore, the resource allocation can be dynamically changed frame-by-frame in response to traffic and channel conditions. Additionally, the amount of resource in each allocation can range from one slot to the entire frame in the time domain, and from one subchannel to the entire subchannels in an OFDM symbol, in frequency domain. Also WiMAX employs fast scheduling both in the DL and UL to respond to fast variations in channel conditions. This fast and fine granular resource allocation allows superior QoS for data traffic in a bursty traffic and rapidly changing channel condition. The fundamental premise of the IEEE 802.16 MAC architecture is QoS. It defines services flows which can map to Diffserve code points or MPLS flow labels that enable end-to-end IP-based QoS. Additionally, subchannelization and MAP-based signaling schemes provide a flexible mechanism for optimal scheduling of space, frequency, and time resources over the air interface on a frame-by-frame basis. This flexible scheduling allows QoS to be better enforced and enable support for guaranteed service levels including committed and peak information rates, latency, and jitter for various types of traffic on a customer-by-customer basis.