Sunday, April 1, 2012


Advanced antenna technologies specified in the WiMAX system to mitigate the non-LOS propagation problems and ensure high quality signal receptions include Diversity and multiple-input multiple-output (MIMO) systems, adaptive antenna systems (AAS), as well as beamforming systems.

Diversity Systems

Diversity technique provides the receiver with multiple copies of the transmitted signal, each of them received over independently fading wireless channel. The notion of diversity relies on the fact that with independently fading replicas of the transmitted signals available at the receiver, the probability of an error detection is improved to pM, where is the probability that each signal will fade below a usable level. The link error probability is therefore improved without increasing the transmitted power. Recently, the use of diversity technique at the transmitter side also gained wide attentions, and has resulted in the consideration of the more general case of multiple transmit–multiple receiving antennas or MIMO systems.

MIMO Systems

The two options for MIMO transmissions in the WiMAX standard are space-time codes and multiplexing. For space-time codes, both space-time trellis codes and Alamouti space-time block codes are specified. However, it is the Alamouti space-time block codes that has yet been implemented by vendors due to its reduced complexity (eventhough space-time trellis code has better link performance improvements). In the Alamouti scheme designed for two transmitting antennas, a pair of symbol is transmitted at a time instant, and a transformed version of the symbols are transmitted in the next time instant. At the receiver, the decoder detects the four symbols transmitted over two time slots and processes them to obtain 2-branch diversity gain. Thus the Alamouti scheme achieves full diversity, with a rate-1 code. For the multiplexing option, the multiple antennas are used for capacity increase. In this option, original high-rate stream is partitioned into low-rate substreams and each substream is transmitted in parallel over the same channel, using different antennas. If there are enough scatterers between the transmitter and the receiver, adequate MIMO detection algorithms like zero-forcing, minimum mean-square error (MMSE), or vertical Bell labs Layered Architecture for space-time codes (V-BLAST), etc., can be designed to separate the substreams. Thus the link capacity (theoretic upper-bound on the throughput) is increased linearly with min(N,M), where is the number of transmit and is the number of receiving antennas.

MIMO Systems with Antenna Selection

For MIMO systems to be deployed on mobile WiMAX devices, the concept of antenna selection is very essential. Because RF chain dominates the link budget in wireless systems, mobile devices are unable to implement large numbers of RF chains to incorporate high order MIMO systems. For such systems therefore, a reduced numbers of RF chains are implemented and antennas with the best received energies are adaptively selected and switched on to the implemented RF chains for MIMO signal processings, as illustrated in Figure 1. The performance of such system has been studied quite elaborately in the literature, in comparison to the full complexity system that utilizes all available antennas. It was shown that the diversity gain performance is maintained in the reduced-complexity system despite the use of antenna selection, while the coding gain deteriorates proportional to the ratio of the selected antennas to the total available antennas.

Figure 1: MIMO subset antenna selection.

MIMO Technologies in IEEE 802.16m Standard

The IEEE 802.16 standards committee has recently initiated the process of extending the existing IEEE 802.16e standard (mobile WiMAX) for high capacity, high-QoS mobile application. The new standard was dubbed IEEE 802.16m at the IEEE January session in London, 2008. The working group tasked with the responsibility of producing the working documents for the new standard was named task group m (TGm). The group hopes to complete the specification for the new standard by the end of 2009. When completed, the standard will be backward compatible with IEEE 802.16e, and interoperable with 4G cellular standards supporting the IMT-advanced technologies. Although the details of the IEEE 802.16m standard is not available at the moment, the most important features being touted for the standard include
  • Target downstream speed of 100 Mbps in highly mobile mode, and upto 1 Gbps in normadic mode (upstream rate are not yet known, but would be at least at par with 802.16e).
  • Channel sizes upto 40 MHz (802.16e currently supports upto 20 MHz channel size).
  • Use of TDD and FDD.
  • Backward-compatibility with 802.16e.
  • OFDMA radio (same as in 802.16e).
  • Mandatory MIMO antenna technology of size 4 × 4 (four transmitting, and four receiving antennas).
In contrast to the IEEE 802.16e, which supports mandatory MIMO antenna technology of size 2 × 2 (two transmitting, and two receiving antennas), the use of mandatory higher-capacity MIMO technology in 802.16m will provide extra capacity to support the targeted high-speed in the downstream. Since downstream has been the bottleneck in wireless services, this improvement will provide significant boost in system capacity, to enable the system support wide range of multimedia services expected in 4-G compatible technologies.
Related Posts with Thumbnails